Enhanced incoherent scatter plasma lines

نویسنده

  • H. Nilsson
چکیده

Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signalto-noise ratios (SNRs) for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF) should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard) will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of beam plasma instability effects on incoherent scatter spectra

Naturally Enhanced Ion Acoustic Lines (NEIALs) detected with Incoherent Scatter Radars (ISRs) can be produced by a Langmuir decay mechanism, triggered by a bump on tail instability. A recent model of the beam-plasma instability suggests that weak-warm beams, such those associated with NEIAL events, might produce Langmuir harmonics which could be detected by a properly configured ISR. The analys...

متن کامل

Enhanced ion acoustic ̄uctuations and ion out ̄ows

A number of observations showing enhanced ion acoustic echoes observed by means of incoherent scatter radars have been reported in the literature. The received power is extremely enhanced by up to 1 or 2 orders of magnitude above usual values, and it is mostly contained in one of the two ion acoustic lines. This spectral asymmetry and the intensity of the received signal cannot be resolved by t...

متن کامل

Substorm Triggering by New Plasma Intrusion: Incoherent-Scatter Radar Observations

In the companion paper, we identified a repeatable sequence of events leading to substorm onset in THEMIS all-sky imager observations: enhanced flows bring new plasma into the plasma sheet. The new plasma then moves earthward as a flow channel, bringing it to the near-Earth plasma sheet and where it produces onset instability. New plasma entering the dusk (dawn) convection cell drifts equatorwa...

متن کامل

Parametric decay of beam-driven Langmuir wave and enhanced ion-acoustic ̄uctuations in the ionosphere: a weak turbulence approach

We present a model that describes the decay of beam generated Langmuir waves into ion-acoustic waves in the topside ionosphere. This calculation is done within the frame of the weak turbulence approximation. We study the spectral signature of such a process as seen by a VHF incoherent scatter radar. An incoherent scatter (IS) spectrum is characterized by two maxima at kradar and ÿkradar, the ri...

متن کامل

Auroral field-aligned currents by incoherent scatter plasma line observations in the E region

The aim of the Swedish-Japanese EISCAT campaign in February 1999 was to measure the ionospheric parameters inside and outside the auroral arcs. The ion line radar experiment was optimised to probe the E-region and lower F-region with as high a speed as possible. Two extra channels were used for the plasma line measurements covering the same altitudes, giving a total of 3 upshifted and 3 downshi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997